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Abstract

Covert recognition of faces in prosopagnosia, in which

patients who cannot consciously or overtly faces nevertheless

manifest recognition when tested in certain indirect ways,

has been interpreted as the functioning of an intact visual

recognition system deprived of access to other brain systems

necessary for consciousness. We propose an alternative

hypothesis: That the visual recognition system is damaged but

not obliterated in these patients, and that it is an

intrinsic property of damaged neural networks that they will

manifest their residual knowledge in just the kinds of tasks

used to measure covert recognition. In support of this, we

build a simple recurrent parallel distributed processing

model of face recognition and lesion the parts of the model

corresponding to visual processing. -At levels of damage

yielding overt recognition performance comparable to patients

described in the literature, the model demonstrates covert

recognition in three different tasks: Savings in re-learning

correct face-name associations relative to incorrect

pairings, semantic priming of occupation decisions on printed

names by faces having the same or different occupations, and

faster perceptual analysis of previously familiar than

unfamiliar faces. Implications for the nature of

prosopagnosia, and for other types of dissociations between

conscious and unconscious perception, are discussed.
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patients who cannot consciously or overtly faces nevertheless

manifest recognition when tested in certain indirect ways,

has been interpreted as the functioning of an intact visual

recognition system deprived of access to other brain systems

necessary for consciousness. We propose an alternative

hypothesis: That the visual recognition system is damaged but

not obliterated in these patients, and that it is an

intrinsic property of damaged neural networks that they will

manifest their residual knowledge in just the kinds of tasks

used to measure covert recognition. In support of this, we

build a simple recurrent parallel distributed processing

model of face recognition and lesion the parts of the model

corresponding to visual processing. At levels of damage

yielding overt recognition performance comparable to patients

described in the literature, the model demonstrates covert

recognition in three different tasks: Savings in re-learning

correct face-name associations relative to incorrect

pairings, semantic priming of occupation decisions on printed

names by faces having the same or different occupations, and

faster perceptual analysis of previously familiar than

unfamiliar faces. Implications for the nature of

prosopagnosia, and for other types of dissociations between

conscious and unconscious perception, are discussed.
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Neuropsychological dissociations between visual perception

and awareness of visual perception

In recent years neuropsychology has seen what Weiskrantz

(1990) has -alled an "epidemic" of dissociations involving

the loss of conscious awareness in particular perceptual or

cognitive domains. Many of these dissociations involve

vision. In such cases, patients may deny being able to see

or recognize visual stimuli, and indeed perform poorly on

certain direct tests of visual perception, but may

nevertheless manifest considerable knowledge of the stimulus

on certain other, generally indirect, tests of perception.

In this article we will focus on prosopagnosia, the

impairment of face recognition following brain damage, and

the dissociation that has been observed in some cases between

the loss of face recognition ability as measured by standard

tests of face recognition, as well as patients' own

introspections, and the apparent preservation of face

recognition when tested by certain indirect tests. Our goal

is to elucidate the underlying causes of this dissociation,

jnd its implications for both the nature of prosopagnosia and

for the neural correlates of conscious and unconscious

perception. Before reviewing the findings to be accounted

for in prosopagnosia, we will provide some broader context by

briefly reviewing the other syndromes in which visual

perception and awareness of visual perception have been

dissociated. We will return to these other syndromes, and

the possible generalizability of our conclusions regarding

prosopagnosia to these other syndromes, in the General

Discussion.

The phenomenon of blindsight, in which cortically blind

patients who deny having any visual experience can localize

and discriminate visual stimuli, was the first

neuropsychological dissociation involving conscious awareness

to be studied in detail. Although it was initially subject to
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much skepticism, two decades of careful research have

demonstrated to most people's satisfaction that the

dissociation is real, and current efforts center on

elucidating the specific neural systems responsible for the

nonconscious components of visual perception in blindsight

(see Weiskrantz, 1990, for a review).

More recently, similar phenomena have been described in

other populations of brain-damaged patients. However, unlike

the kinds of relatively low-level visual abilities retained

by patients with blindsight, such as discrimination of

stimulus location, orientation, or color, which may be

mediated by subcortical visual pathways, these dissociations

involve very high-level forms of visual perception and

recognition. The first of this set of dissociations between

high-level perception, on the one hand, and awareness of

perception, on the other, was described by Volpe, LeDoux and

Gazzaniga (1979) in a study of extinction.

Extinction refers to the impairment in perception of a

contralesional stimulus when presented simultaneously with an

ipsilesional stimulus. Volpe et al. tested the ability of

right parietal-damaged patients to perceive contralesional

visual stimuli in two ways. First, the patients were shown a

tachistoscopic presentation of a pair of stimuli (line

drawings or words), one on each side of fixation, and asked

to name what they saw. In this task, the patients manifested

visual "extinction" of the left stimulus by the right, which

is typical of right parietal-damaged patients: the right

stimulus was generally named correctly, but the left stimulus

was not, and patients sometimes even denied that the left

stimulus had been presented. In contrast, the patients

performed well in a second kind of task with the same

stimuli. When asked whether the two stimuli presented on a

given trial were the same or different, the patients were

highly accurate, even though this task requires perception of

the left stimulus. Volpe et al. interpreted their findings
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as revealing "a breakdown in the flow of information between

conscious and non-conscious mental systems."

Another form of visual recognition in the absence of

conscious awareness of recognition can be found in certain

patients with pure alexia. Pure alexic patients are, by

definition, impaired in reading but have roughly normal

auditory word comprehension and writing, and their underlying

deficit is therefore inferred to be one of visual word

recognition. To the extent that they are able to read, they

do so by a slow and laborious letter-by-letter strategy, and

their reading can therefore be obliterated entirely by

presenting words briefly. However, with brief presentations

of words, some pure alexic patients are able to derive

considerable information from the words, even though they

report being unable to recognize the words and even though

they cannot name the words (e.g., Shallice & Saffran, 1986;

Coslett & Saffran, 1989). For example, with presentations

too brief for any explicit reading, these patients are able

to discriminate words from orthographically legal nonwords,

and to classify words as belonging to a certain category

(e.g. animals, foods) at levels far above chance.

In the past few years a fourth type of dissociation

between visual recognition and awareness of recognition has

been reported, and has already become the most thoroughly

studied of the high-level implicit vision syndromes. This is

the finding of so-called "covert recognition" of faces by

prosopagnosic patients. Prosopagnosia is an impairment of

face recognition, which can occur relatively independently of

impairments in object recognition, and which is not caused by

impairmerts in lower-level vision, or memory. Prosopagnosic

patients are impaired in tests of face recognition such as

naming faces or discriminating familiar from unfamiliar

faces, and are also impaired in everyday life situations that

call for face recognition. Furthermore, by their own

introspective reports, prosopagnosics do not feel as though

they recognize faces.



5

Despite the impairments that prosopagnosic patients show

on a wide range of tests of face recognition, and despite

their own subjective sense of being unable to recognize

faces, numerous demonstrations now exist that some

prosopagnosic patients do indeed recognize faces at some

level. These demonstrations have made use of extremely varied

methodologies, so that it is unlikely that any simple

methodological artifact underlies the phenomenon. The

relevant research includes psychophysiological measures such

as skin conductance responses (SCRs) and event-related

potentials (ERPs), as well as behavioral measures such as

reaction time (RT) and learning trials to criterion.

Evidence for covert recognition of faces in prosopagnosia

In t.ie absence of theories relating psychophysiological

indices to mechanistic accounts of cognition or neural

information processing, it is difficult to use the

psychophysiological findings to constrain a mechanistic model

of covert recognition. Therefore, we will focus primarily on

the behavioral data implicating covert recognition, and

provide just a brief review of some representatative

psychophysiological data here.

Psychophysiological evidence. Bauer (1984) presented a

proscpagnosic patient with a series of photographs of

familiar faces. While viewing each face, the patient heard a

list of names read aloud, one of which was the name of the

person in the photograph. This test has been called the

"Guilty Knowledge Test" because for normal subjects the SCR

is greatest to the name belonging to the pictured person,

regardless of whether the subject admits to knowing that

person. Bauer found that, although the prosopagnosic

patient's SCRs to names were not as strongly correlated with

the names as a normal subject's would be, they were

nevertheless significantly correlated. In contrast, the
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patient performed at chance levels when asked to select the

correct name for each face.

In a different use of the SCR measure, Tranel and

Damasio (1985; 1988) showed that prosopagnosic patients had

larger SCRs to familiar faces than to unfamiliar faces, even

though their overt ratings of familiarity versus

unfamiliarity did not reliably discriminate between the two.

Renault, Signoret, Debruille, Breton & Bolger (1989)

recorded ERPs to familiar and unfamiliar faces that had been

intermixed in different proportions within different blocks

of trials. In general, the P300 component of the ERP is

larger to stimuli from a relatively infrequent category.

They found that a prosopagnosic patient showed larger P300's

to whichever type of face, familiar or unfamiliar, was less

frequent in a block of trials, even though the patient was

poor at overtly discriminating familiar from unfamiliar

faces.

Behavioral evidence. The first evidence of covert

recognition in prosopagnosia was gathered by Bruyer, Laterre,

Seron, Feyereisen, Strypstein, Pierrard & Rectem (1983) in

the context of a paired-associate face-name relearning task,

and this task has become the most widely applied measure of

covert recognition in prosopagnosia. Bruyer et al.'s patient

was asked to learn to associate the facial photographs of

famous people with the names of famous people. When the

pairing of names and faces was correct, the patient required

fewer learning trials than when it was incorrect, suggesting

that the patient did possess at least some knowledge of the

people's facial appearance. Unfortunately, this

demonstration of covert recognition is not as meaningful as

it could be, because Bruyer et al.'s subject was not fully

prosopagnosic; he could manifest an appreciable deg ee of

overt recognition on conventional tests of face recognition

such as forced choice face naming tests.
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Recently, several more severe prosopagnosic patients

have been tested in the face-name relearning task, and some

have shown the same pattern of faster learning of correct

than incorrect face-name associations, despite little or no

success at the overt recognition of the same faces. For

example, de Haan, Young & Newcombe (1987) documented

consistently faster learning of face-name and face-occupation

pairings in their prosopagnosic subject, even when the

stimulus faces were selected from among those that the

patient had been unable to identify in a pre-experiment

stimulus screening test.

Greve and Bauer (1990) used a different form of learning

as evidence of covert recognition in prosopagnosia. They

showed a prosopagnosic patient a set of unfamiliar faces, and

then showed him the same faces each paired with another face,

at which time he was asked t'le following two questions about

each pair: Which of these faces have you seen before? Which

of these faces do you like better? Normal subjects tend to

prefer stimuli that they have seen previously, whether or not

they explicitly remember having seen these stimuli, and this

has been attributed to a "perceptual fluency" advantage for

previously seen stimuli (Jacoby, 1984). Perceptual fluency

refers to the facilitation in processing a stimulus that has

already been perceived, which leads to a subjective sense of

the stimulus seeming more salient, which may in turn be

attributed by the subject to the attractiveness of the

stimulus. Although the prosopagnosic patient was unable to

discriminate previously seen from novel faces, he did show a

normal preference for the previously seen faces.

Evidence of covert recognition has also come from

reaction time tasks in which the familiarity or identity of

faces are found to influence processing time. In a visual

identity match task (see Posner, 1978) with simultaneously

presented pairs of faces, de Haan, Young & Newcombe (1987a)

found that a prosopagnosic patient was faster at matching

pairs of previously familiar faces than unfamiliar faces, as
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is true of normal subjects. In contrast, he was unable to

name any of the previously familiar faces. De Haan et al.

then went on to show another similiarity between the

performance of the patient in this task and that of normal

subjects. If the task is administered to normal subjects

with either the external features (e.g., hair and jaw-line)

or the internal features (e.g., eyes, nose and mouth) blocked

off, with instructions to match on the visible parts of the

face, normal subjects show an effect of familiarity only for

the matching of internal features. The same result was

obtained with the prosopagnosic patient.

In another RT study, de Haan, Young and Newcombe (1987b;

also 1987a) found evidence that photographs of faces could

evoke covert semantic knowledge of the depicted person,

despite the inability of the prosopagnosic patient to report

such information about the person when tested overtly. Their

task was to categorize a printed name as belonging to an

actor or a politician as quickly as possible. On some trials

an irrelevant (i.e., to be ignored) photograph of an actor's

or polician's face was simultaneously presented. Normal

subjects are slower to categorize the names when the faces

;ome from a different occupation category relative to a no-

photograph baseline. Even though their prosopagnosic patient

was severely impaired at categorizing the faces overtly as

belonging to actors or politicians, he showed the same

pattern of interference from different-category faces.

A related finding was reported by Young, Hellawell and

de Haan (1988), in a task involving the categorization of

names as famous or nonfamous. Both normal subjects and a

prosopagnosic patient showed faster RTs to the famous names

when the name was preceded by a picture of a semantically

related face (e.g., the name "Diana Spencer" preceded by a

picture of Prince Charles) than by an unfamiliar or an

unrelated face. Furthermore, the same experiment was carried

out with printed names as the priming stimulus, so that the

size of the priming effect with faces and names could be
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compared. The prosopagnosic patient's priming effect from

faces was not significantly different from the priming effect

from names. However, the patient was able to name only 2 of

the 20 face prime stimuli used.

In sum, a wide variety of methods has been used to

document covert recognition of faces in prosopagnosia.

Although we will argue that not all viable interpretations of

this phenomenon have been considered, and we will urge

consideration of a new interpretation, it would seem that the

correct interpretation is very unlikely to be any kind of

methodological artifact. The investigators in this area have

been vigorous in attempting to eliminate possible artifacts

in each of the experimental paradigms they have used.

Furthermore, the sheer diversity of such paradigms makes an

artifactual explanation unlikely. Finally, t1he absence of

covert recognition in some cases (e.g., Etcoff, Freeman, &

Cave, 1991; Newcombe, Young & de Haan, 1989; Sergent &

Villemure, 1990) suggests that it is not a result of the

experimental paradigms themselves.

Interpretations of covert recognition in prosopagnosia and

their implications

The foregoing results would appear to indicate that, at

least in those cases of prosopagnosia who show cover:

recognition, the underlying impairment is not one of visual

recognition per se, but of conscious access to visual

recognition. Indeed, all of the interpretations so far

offered of covert recognition in Prosopagnosia include this

assumption.

For example, Tranel and Damasio (1988) say, of their

patients' SCRs, that they are "not the result of som

primitive form of perceptual process, but rather an index of

the rich retro-co-activation produced when representations of

stimuli successfully activate previously acquired, non-

damaged, and obviously accessible facial records."
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Similarly, de Haan et al. (1987a) describe their subject's

prosopagnosia as involving a "loss of awareness of the

products of the recognition system rather than ... a

breakdown in the recognition system per se." In a recent

computer simulation of the semantic priming effects described

above, this group modelled covert recognition as a partial

disconnection separating intact visual recognition units from

the rest of the system, again preserving the assumption of

intact visual recognition (Burton, Young, Bruce, Johnston and

Ellis, in press). Bruyer (1991) offers a similar

interpretation, in terms of personal (i.e., conscious agent)

and subpersonal (i.e., comprising at least the visual

recognition system) levels of description: "the conscious

subject does not recognize or identify familiar faces, while

her/his 'information processing system' does."

A related form of explanation has been put forth by

Bauer (1984), who suggests that there may be two neural

systems capable of face recognition, only one of which is

associated with conscious awareness. According to Bauer, the

ventral cortical visual areas, whi..ch are damaged in

prosopagnosic patients, are the location of normal conscious

face recognition. The dorsal visual areas are hypothesized

to be capable of face recognition as well, although they do

not mediate conscious recognition but, instead, affective

responses to faces. Covert recognition is explained as the

isolated functioning of the dorsal face system. This

interpretation is similar to the others in that it

hypothesizes some form of intact visual recognition. It is

distinctive in that the dissociation between recognition and

conscious awareness is not a form of disconnection

(functional or anatomical) between the visual recognition

system and other brain systems that mediate conscious

awareness brought about by brain damage, but is the normal

state of affairs for the dorsal face recognition system.

This explanation is thus analogous to most current

interpretations of blindsight, according to which it reflects
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the functioning of a different (in that case, subcortical)

visual system from that which underlies conscious visual

experience.

These interpretations of covert recognition have

implications both for the nature of prosopagnosia, and for

the neural bases of conscious awareness more generally. With

regard to prosopagnosia, current interpretations of covert

recognition imply that there are at least two kinds of

prosopagnosia, with different underlying causes: one in which

visual recognition is intact but unavailable to consciousness

(in the case of patients with covert recognition) and one in

which visual recognition is impaired (in the case of patients

without covert recognition).

At a more general level, these interpretations have

implications for the broad issue of the neural bases of

consciousness, in that they hypothesize distinct stages of

processing, and corresponding distinct neural substrates, for

face recognition on the one hand and awareness of face

recognition on the other. The assignment of separate brain

mechanisms to information processing and awareness of

information processing has roots as far back as Descartes'

writings on the mind-body problem (with the pineal gland

subserving awareness, in that case), and in the context of

modern neuroscience has been dubbed "Cartesian materialism"

by Dpnnett and Kinsbourne (in press). Perhaps the most

general and lucid expression of this idea, applied to a

variety of neuropsychological syndromes including covert

recognition by prosopagnosic patients, was put forth by

Schacter, McAndrews and Moscovitch (1988). They tentatively

proposed that "(a) conscious or explicit experiences of

perceiving, knowing and remembering all depend in some way on

the functioning of a common mechanism, (b) this mechanism

normally accepts input from, and interacts with, a variety of

processors or modules that handle specific types of

information, and (c) in various cases of neuropsychological
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impairment, specific modules are disconnected from the

conscious mechanism."

An alternative hypothesis: Residual functioning of an

impaired visual recognition system

We will argue that the available evidence on covert face

recognition in prosopagnosics is consistent with an

impairment in visual recognition per se. This interpretation

has implications for our understanding of prosopagnosia, in

that it dispenses with the necessity of postulating different

forms of prosopagnosia due to different underlying causes.

Instead, cases with covert recognition are hypothesized to

have more residual functioning of the visual face recognition

system than cases without. It also has implications for our

understandin- of the neural bases of conscious awareness, in

that conscious awareness of recognition is not attributed to

a distinct neural system from the one subserving recognition

per se. Instead, the same neural system subserves both overt

and covert recognition.

The primary challenge for such an account is to explain

the dissociation between overt and covert recognition, given

that these two sets of phenomena are hypothesized to rely on

the same neural substrates. We will argue that the

difference between them lies in the robustness to brain

damage of performance of the two kinds of tasks, in other

words, the degree of preserved neural information processing

that is required in each case. Specifically, we will argue

that lower quality visual information processing is needed to

support performance in tests of covert recognition (e.g., to

show savings in relearning, and the various RT facilitation

and interference effects) relative to the quality of

information processing needed to support normal overt

recognition performance (e.g., naming a face, sorting faces

into those of actors and politicians).
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One very general way of stating this hypothesis is to

say that the covert tests of recognition are more sensitive

to the residual knowledge encoded in a damaged recognition

system than are the overt tests. Thus, very impaired

performance on overt tests might be associated with only

moderately or slightly impaired performance on the covert

tests. Stating the hypothesis in this way calls attention to

two questions important for evaluating the hypothesis:

First, what are the precise levels of patient performance on

tests of overt and covert recognition, and are they

consistent with the hypothesis of a single damaged system

being tapped by tests of differing sensitivity? Normal-size

covert recognition effects are unlikely to be due to the

functioning of a damaged system (although it would not,

strictly speaking, be impossible, if the "ceiling" on covert

performance were very low relative to the ceiling on overt

performance). Better than chance performance by

prosopagnosic patients on overt tests would also be

consistent with residual functioning of the visual

recognition system (although, by the same token, there is no

logical reason why overt performance could not have its

"floor" of chance performance above the floor of the covert

tests). Second, is there any independent reason to believe

that the covert tests would be more sensitive measures of

residual recognition ability in a damaged recognition system?

Empirical evidence relevant to testing the alternative

hypohesis. In answer to the first question, it is

impossible to compare directly the covert recognition

performance of prosopagnosic patients and normal subjects on

the basis of the evidence currently available, so we cannot

know whether their covert recognition is normal, or merely

present to some degree. In some cases, data from normal

subjects has either not been reported, as in the P300 study,

or would be impossible to obtain, as when familiar faces and

names are re-taught with either the correct or incorrect
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pairings. In other cases, the problem of comparing effect

sizes on different absolute measures arises. In both the SCR

and RT paradigms, covert recognition is measured by

differences between the dependent measures in two conditions

(e.g., familiar and unfamiliar faces). Unfortunately,

patients' SCRs are invariably weaker than those of normal

subjects, and their RTs are longer. It is difficult to know

how to assess the relative sizes of differences when the base

measures are different. For example, is an effect

corresponding to a 200 ms difference between RTs on the order

of 2 seconds bigger than, comparable to, or smaller than an

effect corresponding to a 100 ms difference between RTs of

less than a second? The true scaling of RT in any given task

is an empirical issue; using proportions may be a better

approximation to the scale than linearity, but one cannot a

priori know the true scale (see Snodgrass, Corwin & Feenan,

1990, for a discussion of these issues).

The study that comes closest to allowing a direct

comparison of covert recognition in patients and normal

subjects is the priming experiment of Young, Hellawell and de

Haan (1988). Recall that they found equivalent effects of

priming name classification for their prosopagnosic patient

with either photographs or names of semantically related

people. Of course, this fact alone does not imply that the

face-mediated priming was normal, as face-mediated priming in

this task might normally be larger than name-mediated

priming. To address this problem, Young et al. cite their

earlier experiment, reported in the same article, in which

normal subjects were also found to show equivalent effects of

face-mediated and name-mediated priming. Unfortunately, the

earlier experiment differed in several ways from the latter,

which could conceivably shift the relative sizes of the face-

mediated and name-mediated priming effects: normal subjects

in the earlier experiment performed only 30 trials each,

whereas the prosopagnosic patient performed 240 trials, items

were never repeated in the earlier experiment, whereas they



15

were in the later one, the type of prime was varied between

subjects in the earlier experiment, whereas the patient

received both types, different faces and names were used in

the two experiments, and the primes were presented for about

half as long in the earlier experiment as in the later one.

Ideally, to answer the question of whether this prosopagnosic

patient shows normal priming from faces, a group of normal

control subjects should be run through the same experiment as

the patient.

Turning now to the question of whether the prosopagnosic

patients who show covert recognition also show some degree of

overt recognition, consistent with a damaged but not

obliterated visual recognition system, the evidence is

similarly difficult to evaluate. For example, some patients'

chance performance on overt tasks is consistent with the use

of extreme response biases, which would mask any degree of

remaining sensitivity. Among the three prosopagnosic

patients studied by Tranel and Damasio (1988), two rated

almost all faces as "unfamiliar," and the one who used a

larger portion of the rating scale narrowly missed the .05

significance level in discriminating familiar from unfamiliar

faces.

Statistical naivte concerning the concept of chance

performance has also led to confusion. In some cases, the

term "chance performance" has been used synonymously with

poor performance. For example, de Haan et al. (1987b)

present the results of an overt actor/politician face

judgement task with their patient, and describe the score of

30/48 in a two alternative forced choice task as being at

chance. In fact, there is only a .06 probability of

achieving such a high score by guessing alone. In other

cases, performance is truely not statistically different from

chance (e.g. in Young & de Haan, 1988, 12/30 in a three

alternative forced choice familiarity task) but the small

number of trials makes this a relatively weak test for

purposes of obtaining confidence in the null hypothesis.
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In addition, the ability of this patient and others to

occasionally identify a face by name, a task whose "chance

level" is difficult to estimate but is certainly close to 0%

correct, also indicates that visual recognition has not been

entirely obliterated. For example, this same patient was

able to identify 2 out of 20 of the faces used in the

semantic priming study of Young et al. (1988).

One way in which investigators have attempted to control

overt recognition performance and measure covert recognition

in the absence of overt recognition is by testing patients

only on faces that were not successfully identified in a

screening test. For example, de Haan et al. (1987a) used

only the faces that their prosopanosic patient had failed to

recognize in their face-name relearning task. However, this

presupposes both that there is little or no measurement error

in the overt task, and that overt identification is as

sensitive a test of recognition as savings in relearning.

That these assumptions are problematic was demonstrated by

Wallace and Farah (submitted), who followed the same

screening procedure of eliminating successfully identified

faces with normal subjects on faces that had been learned six

months prior to the experiment, and nevertheless found

savings in relearning the original face-name associations,

relative to new pairings.

Computational rationale for the alternative hypothesis.

The empirical data reviewed so far fail to distinguish

between the original hypothesis of intact face recognition

deprived on access to consciousness, and the alternative

hypothesis that face recognition is impaired and that covert

tasks are more sensitive than overt tasks to detecting

residual functioning. Our reason for prefering the

alternative hypothesis is based on a consideration of the

relative computational demands of the overt and covert tests.

In order to explain how these differ, we will first provide a

very brief overview of computation in recurrent neural
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networks. More extensive background can be found in

Rumelhart and McClelland's (1986) book on parallel

distributed processing models of cognition.

In parallel distributed processing models,

representations consist of a pattern of activation over a set

of highly interconnected neuron-like units. The extent to

which the activation of one unit causes an increase or

decrease in the activation of a neighboring unit depends on

the "weight" of the connection between them; positive weights

cause units to excite each other and negative weights cause

units to inhibit each other. For the network to learn that a

certain face representation goes with a certain name

representation, the weights among units in the network are

adjusted so that presentation of either the face pattern in

the face units or the name pattern in the name units causes

the corresponding other pattern to become activated. Upon

presentation of the input pattern to the input units, all of

the units connected with those input units will begin to

change their activation in accordance with the activation

value of the units to which they are connected and the

weights on the connections. These units might in turn

connect to others, and influence their activation levels in

the same way. In recurrent, or attractor, networks, the

units downstream stream will also begin to influence the

activation levels of the earlier units. Eventually, these

shifting activation levels across the units of the network

settle into a stable pattern, or attractor state. The

attractor state into which a network settles is determined

jointly by the input pattern (stimulus) and the weights of

the network (stored knowledge).

Accordingly, much of the behavior of the network depends

on the pattern of weights. For example, the weights determine

not only which pattern becomes activated in association to an

input pattern, they also determine how quickly this pattern

becomes stable and how quickly a given unit or set of units

reaches some pre-determined threshold of activation. Not
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surprisingly, the current pattern of weights will also

determine how many training cycles are needed to teach the

network a new association. In ways that will be elaborated

shortly, these aspects of network behavior seem closely

related to the behavioral measures of covert recognition

reviewed earlier: speed of perception (corresponding to

settling time), speed of classifying actors and politicians

(corresponding to how quickly actor or politician

representations reach threshold), and, of course, paired

associate learning (a direct correspondence).

When a network is damaged by eliminating units, it will

be less effective at associating the patterns that it knew

previously. This can be understood in terms of the idea that

knowledge is stored in the weights by viewing unit damage as

the permanent zeroing of all weights going into and out of

the eliminated units. As more units are eliminated, the

ability of the network to correctly associate previously

known patterns will steadily decline until it reaches chance

levels.

The impetus for our project comes from the following key

idea: The set of the weights in a network that cannot

correctly associate patterns because it has never been

trained (or has been trained on a different set of patterns)

is different in an important way from the set of weights in a

network that cannot correctly associate patterns because it

has been trained on those patterns and then damaged. The

first set of weights is random with respect to the

associations in question, whereas the second is a subset of

the necessary weights. Even if it is an inadequate subset

for performing the association, it is not random; it has,

"embedded" in it, some degree of knowledge of the

associations. Furthermore, consideration of the kinds of

tests used to measure covert recognition suggest that the

covert measures might be sensitive to this embedded

knowledge. The most obvious example is that a damaged

network would be expected to re-learn associations that it
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originally knew faster than novel associations because of the

nonrandom starting weights. Less obvious, but nevertheless

plausible for reasons to be elaborated later, the network

might settle faster when given previously learned inputs than

novel inputs, even though the pattern into which it settles

is not correct, because the residual weights come from a set

designed to create a stable pattern from that input. Finally,

to the extent that the weights continue to activate partial

and subthreshold patterns over the nondamaged units in

association with the input, then these resultant patterns

could prime (i.e. contribute activation towards) the

activation of patterns by intact routes. These mechanisms

will be discussed in greater detail in the context of the

individual simulations. For present purposes, the general

implication of these ideas is that as a neural network is

increasingly damaged, there might be a window of damage in

which overt associations between patterns (e.g., faces and

names) would be extremely poor while the kinds of performance

measures tapped by the covert tasks might remain at high

levels. Note that if this is true, it does more than just

undermine the prevailing hypothesis of intact face

recognition systems in those prosopagnosic patients who

manifest covert recognition. It offers a specific,

mechanistic hypothesis explaining the overt/covert

dissociations in terms of general principles of computation

in attractor networks.

In order to test this hypothesis, we developed a very

simple model of face recognition, and explored the effects of

damage to visual input units on network performance of three

different types of tasks, corresponding to the savings in

relearning paradigm, the physical matching paradigm, and the

priming paradigm. Before presenting the model and

simulations themselves, we will explain the concepts of

activation space and weight space, which are helpful for

understanding the behavior of the model.
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Spatial analogies for understanding the behavior of attractor
networks

Spatial analogies are useful for visualizing certain

aspects of network dynamics, including the way in which the

network's patterns of activation change under the influence

of an input, and the way in which the ensemble of weights

changes during learning. These analogies will also be useful

in understanding the behavior of the present network under

damage.

The activation state of the network at any point in time

can be represented as a point in a high-dimensional space

called activation space. The dimensions of this space

represent the level of activation of each unit in the

network, assuming a fixed set of weights. In addition to the

dimensions representing the activation levels of the units,

there is one additional dimension, representing the overall

fit between the current activation pattern and the weights.

When units that are both active have a large positive

weight between them, so that they reinforce each other's

activation, this is an example of a good fit. If one unit is

activated and another is not, and the weight connecting them

As positive, or if both units are active and their is a

negative (i.e., inhibitory) weight between them, the fit

would be poor. This measure of fit is called "energy," with

low energy representing a better fit. The energy value

associated with each pattern of activation defines a surface

in activation space.

When an input pattern is presented to the network, the

corresponding initial position in activation space is defined

by the activation levels on the input units, along with

resting level values for the dimensions representing the

other units in the network. The weights in the rest of the

network will not fit well with uniform resting level

activation values over their portion of the network (assuming

they have been trained to associate a pattern with the

input). Thus, the initial point in activation space will be
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in a region of high energy. As activation propagates through

the network, the pattern of activation changes and the point

representing this pattern moves along the energy surface in

activation space. The movement will be generally downwards,

as the network lowers its energy, much as a ball rolls down a

hill to lower its potential energy. To see why this would

happen in terms of network dynamics, rather than by analogy

with rolling balls, consider the examples given earlier of

high and low energy activation states. For example, active

units connected by negative weights (a poor fit, high energy

pattern) will tend to change their activations until one is

active and the other not (a good fit, low energy pattern).

The energy minima towards which the network tends are

the "attractors" mentioned earlier in this article.

Attractors are useful in network computation not only for

associating patterns and completing partial patterns, but

also for their ability to "clean up" a noisy input, by

transforming a pattern similar to a known pattern into that

known pattern (i.e., a pattern just uphill from an attractor

will roll down into the attractor).

How quickly the network settles when presented with an

input pattern depends upon how quickly it can traverse the

distance between its starting point in activation space and

the attractor into which it "rolls." This in turn depends on

the shape of the energy "landscape" because the network's

activation pattern will travel more directly (and therefore

quickly) down a steep smooth incline than along more bumpy,

winding terrain. The shape of the energy landscape is

determined by the network's weights. In an untrained

network, the landscape will be generally flat with random

dips. When the network has learned a certain association,

its weights will create an energy landscape in activation

space in which the point corresponding to the input pattern

and the attractor point corresponding to the complete

associated pattern are connected by a smoothly and steeply

sloping path that causes the one state to "roll" directly
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down into the other. Because some patterns will have the

same value on some dimensions (i.e., they will have units

activated in common) the network will need barriers to

prevent confusion among trajectories for different patterns.

Paths bounded by these barriers can be thought of as ravines.

The weights that underlie the attractor structure of

activation space can themselves be used to define a space,

and this space is useful for visualizing the process of

learning. In weight space, each of the weights in a network

corresponds to one dimension of a space, so that we can

represent the sum total of the network's knowledge as a point

in this high dimensional space. If one additional dimension

is now added to the space, representing the performance of

the network at associating names and faces, then there will

be a surface defined by each combination of weights and their

associated performance. The energy of the point 4n activation

space to which the network settles with a given set of

weights is a measure of performance, with low energy (that

is, good fit between the weights and the resultant activation

pattern) being better performance. If, when we present the

input, we also fix the activation values for the units for

the associated pattern ("clamping"), then the desired weights

will be those that minimize the network energy associated

with this pattern. Learning consists of moving along this

energy surface in weight space, changing weight values, until

a sufficiently low point has been reached.

The model

The present model is intended to illustrate some very

general, qualitative aspects of the behavior of damaged

attractor networks in the kinds of tasks used with

prosopagnosic patients. It is accordingly very simple.

Figure 1 shows the architecture of the model. There are five

pools of units. The face input units subserve the initial

visual representation of faces, the semantics units subserve
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representation of the semantic knowledge of people that can

be evoked b,7 either the person's face or name, and the name

units subserve the representation of names. In a model of

this kind, hidden units are helpful to learn the associations

among patterns of activity in each of these three layers.

These are located between the face and semantic units,

(called the face hidden units) and between the name and the

semantic units (the name hidden units). Thus, there are two

pools of units that comprise the visual face recognition

system in our model, in that they represent visual

information about faces: the face input units and the face

hidden units.

The connectivity among the different pools of units was

based on the assumption that in order to name a face, or to

v~sualize a named person, one must access semantic knowledge

of that person (Young, Hay & Ellis, 1985). Thus, face and

name units are not directly connected, but send activation to

one another through hidden and semantic units. The arrows in

Figure 1 show the bidirectional c- .._ticity between layers

and the within-layer connectivity. Further, each unit had a

bias weight which learned the average activation level of

that unit (a technique for improving the ability of the

network to learn, see Rumelhart, Hinton & Williams, 1986).

Units in this model have a threshold of zero. Thus,

when the activation value of a unit is positive, it will

activate those units to which it is connected by positive

weights and inhibit those units to which it is connected by

negative weights, and when its activation value is negative

it will have the opposite effects.

Faces and names are represented by random patterns of 5

active units out of the total of 16 in each pool. Semantic

knowledge is represented by 6 active units out of the total

of 18 in the semantic poc'.. The model makes no committment to

any particular form of representation., beyond supposing that

the representations a-e distributed -- that is, each face,

semantic representation or name is represented by multiple
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units and each unit represents multiple faces, semantic

representations or names. The information encoded by a given

unit will be some "microfeature" (Hinton, McClelland &

Rumelhart, 1986) that may or may not correspond to an easily

labelled feature (such as eye color in the case of faces).

The only units for which we have assigned an interpretation

are the "occupation units" within the semantic pool. One of

them represents the semantic microfeature "actor" and the

other represents the semantic microfeature "politician."

We created 40 distinct individuals, each consisting of a

random name, face and semantic pattern (o- r the 16

unlabelled semantics units). Ten individuals were actors

(i.e., their semantic pattern had the actor unit active in

addition to the other 5 active semantics units), ten were

politicians, and the remaining 20 were not assigned either of

these two occupations. These 20 individuals were not tested

in the simulations to be reported, but were included in

training to simulate the fact that subjects know many more

people than are ever tested in a given experiment. Of the 10

actors and 10 politicians, five of each were not used in

training, so trat we could compare the effects of familarity

on network performance in Simulation 2, resulting in a

training set of 30 patterns.

The network was trained to be able to associate an

individual's face, semantics, and name whenever one of these

was presented, using the Contrastive Hebbian Learning (CHL)

algorithm (Movellan, 1990). CHL is a variation of a mean

field approximation of a Boltzmann Machine (Hinton &

Sejnowski, 1986; Hopfield, 1984). For each training epoch we

presented one of the three representations for each

individual (face, semantics, name) and trained the network to

reproduce the other two. The learning rate was .01. The

network was trained for 320 epochs on the complete set of 30

individuals, and for an additional 5 epochs on the set of the

10 individuals to be later tested to insure 100% accuracy for

these individuals in the undamaged network.
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In accordance with the CHL algorithm we used the

Interactive Activation and Competition (McClelland &

Rumelhart, 1989) activation function, with a step size of

.01, maximum of 1, minimum of -1, rest of 0, and decay of .2.

Simulation 1

Savings in relearning face-name associations

The primary goal of this simulation was to examine the

effects of different degrees of damage to the visual units

(face input and face hidden units) on both overt

identification of face patterns and on the difference in

number of cycles needed to re-learn previously known name-

face associations, relative to the number needed to learn to

associate the same names and faces paired differently.

Hinton and Sejnowski (1986) demonstrated savings in

relearning after a variety of types of damage to a recurrent

network, including unit ablation. If there is some degree of

damage to the face units that can result in poor overt

performance while preserving significant savings in

relearning, then the savings in relearning observed in

prosopagnosic patients need not imply that visual recognitior"

per se has been spared.

Methods

The network was lesioned in two different ways: by

eliminating randomly chosen units from the face input pool

and from the face hidden unit pool. Seven different levels

of damage were used, corresponding to removal of 2, 4, 8, 10,

12, and 14 units from the pools of 16 units, corresponding to

12.5%, 25%, 37.5%, 50%, 62.5%, 75%, and 87.5% damage.

The basic measure of overt recognition, used for

comparison with covert performance in all of the simulations

to be reported, was the percentage of correct name

identifications of faces in a 10-alternative forced choice
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among the 10 test patterns. Thus, a face was considered

correctly identified if the resultant name pattern matched

the correct name pattern more closely than any of the other 9

test patterns. Degree of match was quantified by the number

of units having the same sign (positive or negative). This is

a more lenient method of scoring overt recognition than

requiring a perfect match, or even a match to within one bit.

In the first simulation, the names and faces for the ten

familiar actors and politicians were paired correctly. In

the second simulation, they were paired incorrectly, although

never across occupation categories, because this would

confound the correct-incorrect distinction with the

compatability of the occupation unit pattern. In order to

expedite learning, each network was required to learn only 5

name-face pairs at a time. These were presented to the

network after damage for retraining in separate simulations.

In order to simulate the training procedure used with

patients, in which they are asked to name the face on each

trial rather than select from a multiple choice set of names,

we used the pattern that resulted in the name units of the

network following presentation of the face as the

simulation's response. This was scored as correct if it

matched the target pattern to within 2 units.

In order to measure savings in relearning for correctly

paired names and faces, the damaged network was retrained for

10 epochs and its performance on overt identification was

assessed. This procedure was repeated 10 times with

different sets of random lesions, in order to assess the

reliability of the results.

Results and Discussion

Table 1 and Figure 2 show the overt identification

performance of the network in the 10 alternative forced

choice task after different amounts of damage Lo the two

pools of visual units. By 50% damage to either pool of
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units, the network is correct for only about 1 in 4 faces.

With higher levels of damage performance drops further. At

62.% and 75% damage to face input units, only about 1 in 6

faces are corrected identified. At these same levels of

damage to face hidden units, performance is not significantly

different from 1 in 10, or chance performance.

Despite the network's poor performance in the overt

tasks under damage, it manifests covert knowledge of the

faces by relearning correct name-face pairings more quickly

than incorrect ones. Table 2 shows the average percent

correct naming, to within a 2 unit matching criterion of the

correct name, for each degree of damage to the face input and

hidden units after 0 and 10 epochs of learning for correctly

and incorrectly paired faces and names. Figure 3 shows the

learning curves for the network after 50, 62.5 and 75% damage

to the face input and face hidden units for the same

pairings. Although not all levels of damage lead to

equivalent performance for correct and incorrect pairings at

the outset of training, the learning curve is steeper, that

is learning is faster, for the correct pairings in all cases.

Furthermore, this is true even with 62.5 and 75% damage to

face input units, and with 50 and 75% damage to face hidden

units, for which the pre-training performance of the damaged

network is comparable for correct and incorrect pairings.

The phenomenon of savings in relearning correct face-

name pairings in the damaged network can best be understood

in terms of the way in which weight space is altered by

damage. The explanation has two parts: First, we will

explain that the energy associated with a particular point in

weight space does not change drastically as a result of

damage, and accordingly, activation patterns that were

attractors before damage to the weights remain relatively low

energy states (i.e., are at least close to being attractors)

after damage. Second, we will explain that these relatively

small changes can nevertheless result in poor performance

because a particular input pattern may no longer be able to
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roll into the correct attractor, even though that attractor

may have been preserved. As a result of these two properties

of damaged attractor networks, only a small amount of weight

change (re-learning) will typically be needed to restore the

performance of the network on previously learned

association,.

To begin with the first part of the explanation, we will

explain why the removal of units preserves the overall

topography of the energy landscape of weight space, and thus

the locations of attractors in activation space. When units

are removed from the network, all of the weights going into

and out of these units are also eliminated. This reduces the

dimensionality of the weight space, creating a "projection"

of the higher dimensional space onto the resulting lower

dimensional space. When this happens, the values of the

remaining weights may not be optimized for correct

associations on their own. Therefore, the energy surface of

the weight space may no longer have minima in exactly the

correct locations. However, the change in shape is generally

not drastic; points that were low in energy before the

projection stay relatively low afterwards. A brief formal

explanation of why this is so follows.

The energy of a point in the weight space is defined by

the mean field algorithm to be:

-Yi Ij ai wij aj + Ii fstress(ai) (1)

where ai and aj are the activations of the units connected by

weight wij, and fstress is a monotonic function of the unit

activation that penalizes large activations. The change in

energy that results from the elimination of a single unit,

aj, is therefore a linear function of two components: the

weights wij to the units to which it was connected, and the

activation value of the unit. Assuming that the network

settles into the same activation state for its remaining
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units after damage as before, the energy of that state will

have changed in direct proportion to the amount of damage.

So, for example, with 75% damage the energy of the

corresponding point in weight space would differ from the

pre-damage point on average by 75%, as opposed to more

drastic changes by orders of magnitude.

This might lead one to expect the network's performance

to be highly robust in the face of rather large lesions.

After all, if the attractors in the activation space

associated with the remaining subset of weights have not been

greatly shifted, then input patterns should still be able to

roll along its old trajectory into approximately correct

final states. However, this is not the case because of the

second of the two properties mentioned earlier. There may be

small bumps introduced into that trajectory that have the

potential to deflect the network onto a different trajectory

at junctures en route. (These junctures represent the

crossings of paths in some, but not all, dimensions.) To the

extent that input patterns are similar, that is share active

units in common, there will be many such junctures as similar

starting points in activation space must be channeled into

different final points in activation space. Because any

"wrong turn" will result in an erroneous final state,

performance will be powerfully affected by these small

perturbations in the energy surface.

We are now in a position to explain the phenomenon of

savings in relearning. Although a small change in the energy

surface can cause drastic changes in the final activation

state by leading the network into a different trajectory, the

amount of learning (i.e., weight change) that is required to

restore the network to good performance is generally small,

because it is only necessary to eliminate the critical small

bumps in activation space. As already shown in the first

part of the explanation, the large scale structure of the

activation space will have been preserved and need not be

relearned.
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Simulation 2

Speed of visral perception

The goal of this simulation was to examine the effect of

different degrees of damage to visual units on the speed of

visual analysis of face patterns, and specifically whether

speed of analysis will depend on face familiarity at levels

of damage where faces are not reliably identified. This

question is of interest primarily because of de Haan et al.'s

(1987) demonstration that their prosopagnosic subject could

perform physical same/different matching on faces more

quickly when the faces were previously known to him.

Presumably, the effect of familiarity on speed in this

paradigm is not dependent upon same/different matching per

se, but reflects a difference in the speed of deriving a

visual representation that can be used to compare the

appearance of the two faces. Therefore, we have not tried to

implement a same/different matching paradigm here. The

relevant issue is whether visual analysis of a face pattern

proceeds more quickly when the face is familiar than when it

is unfamiliar.

In the present model, the speed of visual perception is

most directly measured by the number of cycles needed for the

visual units of the network to settle into a stable pattern

after presentation of a face pattern. Note that we need

assume only a monotonic relation between model settling time

and human RT in order to interpret the results of the present

simulation.

Methods

The model was lesioned as in the previous simulation.

The face portion of the 10 actor and 10 politician patterns

were then presented to the network. As explained earlier, in
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the description of the model, the network had been trained on

half of these patterns, divided equally into 5 actors and 5

politicians. The number of cycles needed for the visual units

(input and hidden) of the network to settle was recorded for

each face pattern. The visual units were considered to have

settled when the average change in activation of the units in

a cycle was less than .001. The face input unit activations

were allowed to settle by presenting the input pattern as a

component of the net input to each unit, instead of simply

clamping the activations (i.e., "soft" clamping). As for the

previous simulation, 10 replications were performed with

different random patterns of damage.

Results and Discussion

The settling times foi familiar and unfamiliar face

patterns are shown in Table 3 and presented graphically in

Figure 4. At levels of damage causing poor or chance overt

performance (see Table 1), the settling time for familiar

face patterns is nevertheless faster than for unfamiliar

patterns. This pattern is maintained throughout all degrees

of damage to the face hidden units, and is present with as

much as 50% damage to the face input units.

Why should the familiarity of the pattern affect how

quickly it settles? In an intact network, a familiar input

pattern will roll into an attractor representing the correct

pattern of activation to which it should be associated,

because the energy landscape has been tailored for this

purpose. Given that much of the activation space has been

shaped by learning, the trajectory of the network when

presented with the input portion of an unfamiliar pattern

will also tend towards attractors for the familiar patterns.

However, because unfamiliar input patterns begin their

trajectory in a region of activation space that has not been

specifically shaped for this purpose, their trajectories into

the attractor state will typically be less direct and more
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circuitous. For this reason, familiar input patterns will

settle faster than unfamiliar input patterns in an intact

network.

When the network is lesioned, the loss of units reduces

the dimensionality of the space, and the loss of weights

distorts the shape of the new, lower-dimensional energy

landscape. As explained previously, the large-scale

topography is preserved, maintaining the settling time

advantage for patterns that begin on the glide slope of

attractors. In contrast, there is no reason to expect

unfamiliar input patterns to find themselves any nearer to

trained attractor slopes, on average, after damage than

before. However, because of the susceptibility of the

activation state trajectory to mischanneling by small bumps

in the energy surface at potential junctures, also explained

previously, overt network performance will suffer. Thus, the

settling time advantage for familiar patterns is preserved in

conjunction with poor overt performance.

The faster settling of familiar patterns is also

relevant to Greve and Bauer's (1990) finding of greater

perceptual fluency for faces seen previously by their

prosopagnosic subject, as measured by attractiveness ratings.

With exposure to new patterns, the damaged network will alter

its weights to begin to form attractors for those patterns,

although it will arrive at the best set of weights more

slowly than a network that has a larger number of weights

(cf. the slower learning of the increasingly damaged networks

in Simulation 1). This leads to faster settling times for

faces seen post-damage than for completely novel faces, even

before the network has learned to accurately recognize the

patterns.

Indeed, examination of the settling times for the novel

patterns of Simulation 1 (i.e. the novel combinations of

faces and names) shows that, at early stages of learning

associated with chance overt performance in the damaged

network, settling time is nevertheless reduced relative to no
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learning. As shown in Table 4, at all levels of hidden unit

damage and at 4 out of 7 levels of input unit damage,

settling time is faster after just 5 epochs of training than

before.

Simulation 3

Semantic priming of occupation decisions

The goal of this simulation was to examine the effects

of different amounts of damage to the visual units on

facilitation and interference caused by a face prime when

judging the occupation of a named person. As a related

measure of overt performance, the network was presented with

the face input patterns alone to classify according to

occupation.

Methods

The mod-i was lesioned as in the previous simulations.

The name p,-rtions of the 5 familiar actor and 5 familiar

politicLan patterns were presented to the network, paired

with &'ace patterns from the same group of individuals. Each

of the 10 names was presented in three conditions: alone,

paired with the nonidentical same-occupation faces and paired

with the different-occupation faces. The number of cycles

needed for one of the occupation units, actor and politician,

to attain a positive activation value was recorded. (The

bias weights, learned during training, were largely

inhibitory, leaving the units in a negative state in the

absence of input activation.) As usual, 10 replications of

the simulation with different random lesions in each of the

two pools of units were carried out.

The overt ability of the network to derive occupation

information from the face patterns was measured by recording

which occupation unit reached threshold (i.e., became

positive) after presentation of the face. For trials on

which neither unit reached threshold, the network was assumed
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to guess with probability .5 of being correct. The rationale

for scoring performance in this way, rather than taking the

larger activation of the two regardless of whether either are

positively activated, is that units, like neurons, have a

categorical quality to their state. In the present model,

there is a categorical difference between the way in which

positive and negative valued activation in a unit affects the

other units to which it is connected. For example, a

negatively activated unit will inhibit units to which it is

connected by positive weights, but will excite them when its

activation goes positive. Note that the method of :oring

overt categorization was lenient in that we only require the

sign of the activation to be correct.

Results and Discussion

The performance of the network on the overt occupation

decision for faces is shown in Table 5. With lesions to

hidden units or input units of 50% and 62.5%, the network's

performance falls in the range of 59-65% correct. This is

comparable to the performance of the prosopagnosic patient

reported de Haan et al. (1987b), who obtained 62.5% correct

on the same task.

Table 6 and Figure 5 show the number of cycles required

for the correct occupation unit to become positive after

presentation of a name, without an accompanying face, and

with faces from the same or different occupation category.

Fewer cycles are required for the occupation units to attain

positive values when the face and name are from the same

occupation category than when they come from different

occupation categories. The effect of the face is evident at

all but the most extreme levels of damage. In particular, it

is evident at the levels of damage to input and hidden units

whose corresponding overt performance was discussed above.

The data from the no-face condition suggest that, as in de
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Haan et al.'s (1987) study, the effect is primarily one of

interference rather than facilitation.

The mechanism by which faces affect performance in the

present model is as follows: To the extent that the

presentation of a face pattern causes any activation to

propagate into the rest of the network, this activation will

influence the activation of the occupation units, even if it

is not in itself sufficient to bring them all the wal to

threshold. At first glance this would seem to predict both

facilitation and intereference. Facilitation would arise

because the face would contribute activation towards its

occupation unit, and if the name has the same occupation,

less additional activation from the name pattern would be

needed for that occupation unit to attain a positive value.

Interference would be predicted because the negative

correlation between the two occupation units' activations,

over the set of known patterns, would have resulted in an

inhibitory connection between them having been learned by the

network, and so that the activation of either occupation unit

would tend to inhibit the activation of the other. In

effect, the network learns which subpatterns are consistent

and inconsistent with which others, and inconsistent

subpatterns (e.g., the single unit actor or the single unit

politician) will tend to inhibit each other. The lack of an

observed facilitation effect is attributable to mutual

inhibition of the patterns for different individuals in the

same occupation category counteracting the facilitation

mechanism just described. That is, some of the units

activated by the name, which would normally contribute

activation to the occupation unit, are themselves being

inhibited by the influence of the face pattern.

A similar account has already been presentel by Burton,

et al. (in press) to explain semantic priming by faces in

prosopagnosia. They implemented an interactive activation

model with local representations, and simulated the effect of

faces in the occupation decision task for a prosopagnosic
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subject by attenuating the connections between their

equivalents of face units and semantics. However, because

their simulation is local and hand-wired, it does not develop

mutual inhibitory relations among subpatterns as in the

present model. As a consequence, it shows as much

facilitation as interference in this task.

The same mechanism proposed here will, in principle,

explain Young et al.'s (1988) finding of semantic priming of

names by associated faces in a name familiarity task.

Indeed, Burton et al. were also able to simulate the two

kinds of tasks in the same way.

Simulation 4

Covert recognition of overtly unrecognized faces

In this final section, we demonstrate that the preserved

covert recognition ability in the damaged network is not the

result of the network's preserved overt recognition ability

for a subset of the familiar patterns. The demonstration

takes the form of an existance proof. For each of the three

tasks simulated, we tested the covert recognition performance

of the network just on the subset of faces that it failed to

recognize in the overt recognition tests.

Methods

A randomly selected 50% of the face hidden units were

damaged and the resulting network was tested on the overt 10-

alternative forced choice recognition test. The two faces

out of 10 that were correcty identified were eliminated from

the set of test faces. For the semantic priming experiment,

only the 5 faces that were not correctly categorized as

actors or politicians were retained in the test set. The

damaged network was then tested for covert recognitioi in the

three previously described tasks.
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Results and Discussion

The network relearned the correct associations among the

eight faces and names faster than the incorrect: After damage

and prior to learning, it obtained a score of 0% correct for

both the cor.Lct and incorrect name-face pairs. After 10

epochs of learning, more learning had taken place for the

correct pairs: the network obtained a score of 50% correct

for the correct pairs and 0% correct for the incorrect pairs.

As before, presentation of a face from the wrong

occupation category delayed the relevant occupation unit from

reaching threshold when a name was presented. The mean

number of cycles to reach threshold was 70.0 when no face was

presented, 33.6 when a face from the same category was

presented, and 94.9 when a face from the other category was

presented.

Settling time in the face units was faster for the 8

previously learned faces than for the 10 novel faces, on

average 200.8 and 232.2 cycles, respectively.

In sum, the covert recognition abiulities displayed by

damaged attractor networks does not depend upon the presence

in the test set of any overtly tdentified face patterns.

General Discussion

We have shown that some very general properties of

attractor networks lead to preserved performance, after

network damage, for the types of tasks used to measure covert

recognition in prosopagnosia. Specifically, we have

simulated in varying degrees of detail three types oi

behavioral task used to document covert recognition. At

levels of damage associated with low overt identification and

categorization performance of face patterns, the network

continues to manifest knowledge of the faces when tested by

the covert tasks. Of additional interest is the fact that

visual portions of the network were damaged in these



0

simulations, demonstrating that one need not conclude that

visual recognition is intact in cases of prosopagnosia with

covert recognition. In the remainder of this article, we

will discuss the implications of these results for our

understanding of covert face recognition, other covert visual

abilities, prosopagnosia, and consciousness.

Covert face recognition. Previous attempts to explain

covert recognition of faces in prosopagnosia have assumed

that covert and overt recognition are dependent on at least

partly distinct components of the cognitive architecture,

somehow disconnected by brain damage, and that the visual

recognition component is intact. In contrast, we have shown

that the same system may subserve both overt and covert

visual recognition, and that damage to this system may spare

covert recognition relative to ov-rt recognition.

Of course, the results of our simulations do not prove

that our account is correct, merely that it is possible.

Nevertheless, we find it plausible for three reasons: First,

it follows from a set of independently motivated

computational principles. These include the utility of

ettractor states in network computation, and the tendency o:

activation space to preserve its large-scale attractor

structure under damage while acquiring changes in small-scale

topography that impair the network's overt performance, as

well as the concept of a threshold for activation flow

between units. Second, it is consistent with the available

data on overt and covert performance in prosopagnosic

patients, specifically the occasional success in overt tasks

by these patients. Third, it is a parsimonious account. It

is not necessary to invoke separate brain centers for

recognition and overt awareness of recognition and only one

face recognition system is hypothesized (cf. Bauer, 1984).

Furthermore, consideration of the lesion sites and associated

perceptual deficits in cases of prosopagnosia suggest that

the visual system is likely to have been damaged.
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On our view, the phenomenon of covert recognition in

prosopagnosia is no less interesting or important if it is

explained in terms of incomplete damage to the face

recognition system. The fact that recognition can be manifest

in different ways, some of which are accompanied by conscious

awareness and others not, and that this distinction appears

to be coextensive with their vulnerability to brain damage,

is of obvious high importance to the understanding of

perception and the brain. We are merely pointing out the

most straightforward explanation of this dissociation -- that

the face recognition system is spared, and the impairment in

overt recognition tasks arises elsewhere -- is not the only

possibility. In addition to questioning the prevailing

hypothesis, we are offering a new one, that has the advantage

of being more explicit about mechanism.

Covert recognition in other syndromes. Could the same

type of hypothesis account for other dissociations between

perception with and without awareness? In principle it

could, although there is no reason to assume that all of the

syndromes reviewed earlier will have the same explanation. In

some cases, there is evidence favoring the involvement of at

least partially distinct systems subserving overt and covert

perception. Although it has been suggested that the visual

abilities in blindsight may be mediated by residual

functioning of the cortical visual system (Campion, Latto &

Smith, 1983), there is evidence of disproportionate

involvement of the subcortical visual system in at least some

of these abilities. For example, asymmetries in the

processing of visual stimuli between nasal and temporal

hemifields suggests that the subcortical visual system (which

is receives disporortionate input from the temporal

hemifield), plays a primary role in covert visual abilities

in this syndrome (e.g., Rafal, Smith, Krantz, Cohen, A. &

Brennan, 1990). Implicit reading in pure alexia may also be

carried out by different systems from those subserving normal
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explicit reading. The hypothesis of right hemisphere

mediation of implicit reading (in contrast to the predominant

role of the left hemisphere in normal reading) is supported

by the relative absence of implicit reading for abstract

words, function words, and grammatical inflections, and the

lack of access to phonology, all characteristics of the right

hemisphere lexicon (Coslett & Saffran, in press).

Nevertheless, it is conceivable that this profile of reading

abilities would also emerge from damage to the left

hemisphere reading system. For example, differences between

word classes such as word frequency and availability of

collatoral support from semantic representations may confer

different degrees of robustness to damage on them, and

differences in the regularity of mapping among print, meaning

and phonology could also affect the robustness of these

mappings in the network after damage.

Findings of covert recognition in parietal-damaged

patients may be best explained in terms of the residual

functioning of a damaged visual system, rather than a

dissociation between conscious and unconscious visual

information processors. Farah, Monheit and Wallace (in

press) showed that the dissociation observed by Volpe et al.

(1979) could be obtained in normal subjects simply by placing

a translucent sheet of drafting stock over the left half of

the display to degrade subjects' perception of stimuli on the

left. We also showed that the dissociation could be

eliminated in parietal-damaged patients with extinction when

the overt and covert tasks were matched for the precision of

visual perception required by each. This implies that the

dissociation between overt and covert perception after

parietal damage is also due to differences in the quality of

information needed to support performance in the two types of

task, with performance in the covert task again more robust

to low quality information. The nature of the information

degradation appears to be different in the two cases,

however. In prosopagnosia, what is degraded is the pattern
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of previously learned associations within the visual

recognition system, so that the effects of prior learning on

perception are disrupted. In extinction, there is no

structural impairment of representations, as evidenced by the

ability of patients with extinction to perceive normally in

the absence of a simultaneously occuring ipsilesional

stimulus. Rather, the locus of degradation appears to be

prior to visual recognition, affecting the input to visual

recognition memory. This is consistent with our ability to

simulate covert recognition in extinction by degrading the

stimulus input to normal subjects.

The most general implication of the present model for

the study of covert perception is that is demonstrates

another mechanism by which overt and covert processing can be

dissociated, beyond those previously considered. Schacter et

al. (1988) list three general types of account for

overt/covert dissociations: Conservative response bias in the

overt tasks; disconnection from language (on the assumption

that language is more involved in the overt tasks); and

truely distinct and thus dissociable processing systems for

overt and covert performance. To these we would add a

fourth: differential susceptibility to damage of overt and

covert performance. We have shown how knowledge can reside

in a damaged network but be inaccessible for most purposes,

for reasons quite distinct from the signal detection theory

concept of bias, or a disconnection from other systems.

Prosopagnosia.- The finding that some prosopagnosic

patients manifest covert recognition and others do not has

been taken as an indication that there are two different

types of prosopagnosia, one caused by a visual perceptual

impairment per se and the other by a disconnection of visual

recognition and other, conscious, mental systems (e.g.,

Newcombe, Young & De Haan, 1989). However, our analysis

suggests that these two groups of prosopagnosic patients are

more likely to differ severity than in kind. In particular,
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the similarity of the effects obtained when we lesioned face

input units and face hidden units suggests that the presence

of covert recognition may not be a precise way of

discriminating different functional loci of damage. In fact,

lesions further downstream in our model also showed similar

effects to the ones reported here. This is a consequence of

the highly interactive nature of the model. The

nonlocalizability of errors resulting from damage in

interactive models has been discussed in detail by Hinton and

Shallice (1991) for their model of reading.

Consciousness. The dissociations between covert and

overt perception in prosopagnosia and in other syndromes are

of interest independent of the association between overt

perception and consciousness. The fact that knowledge may be

accessible in certain tasks and not in others is somewhat

counterintuitive, and promises insights into how information

is represented in the brain. Indeed, this has been the focus

of the present paper. However, it cannot be denied that part

of the fascination of these dissociations comes from the

involvement of consciousness, specifically the patients'

seemingly earnest denials of conscious awareness of stimulus

properties of which they show knowledge in certain tasks. On

the basis of our research, can we offer any insights into

consciousness?

To the extent that the presence or absence of conscious

awareness is coextensive with the distinction between tasks

that can detect residual knowledge in a damaged system and

tasks that cannot, as it so far appears to be, then on the

basis of our simulations we can tentatively conclude this:

Whatever precisely we mean by consciousness of perception

(see Allport, 1988), its neural substrates need not be

separate from the neural substrates of perception per se.

The Cartesian idea by which there is some entity outside of

the visual system per se which must receive the output of the

visual system in order for conscious perception to occur
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seems necessary according to the prevailing interpretation of

covert recognition as the product of an intact visual system,

However, if covert recognition reflects residual knowlege in

a damaged visual system, then the Cartesian view is not

necessarily true. In this case, visual recognition and

awareness of recognition could both be products of the

functioning of modality-specific visual cortex. Of course,

this raises the question of why we can only be conscious of

relatively high quality information in our visual systems.

Unfortunately, this is a question for which we have no good

answer.
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Table 1
Overt Identification in 10-Alternative Forced Choice

(a)
Hidden Unit Damage

Amount of Damage Percent Correct
(percent units eliminated) Mean Standard Error

12.5 62 4.9

25 43 5.0

37.5 43 4.8

50 24 4.3

62.5 14 3.5

75 13 3.4

87.5 8 2.7

(b)
Input Unit Damage

Amount of Damage Percent Correct
(percent units eliminated) Mean Standard Error

12.5 64 4.8

25 56 5.0

37.5 41 4.9

50 26 4.4

62.5 17 3.8

75 17 3.8

87.5 19 3.9
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Table 2
Savings in relearning correct relative to incorrect

face-name pairings

(a)
Hidden Unit Lesion

Amount of Damage Percent Correct
(% units
eliminated) Correct Pairings Incorrect pairings

0 epochs 10 epochs 0 epochs 10 epochs

Mean SE Mean SE Mean SE Mean SE

12.5 58.0 5.0 98.0 1.4 6.0 2.4 10.0 3.0

25.0 26.0 4.4 82.0 3.9 8.0 2.7 14.0 3.5

37.5 34.0 4.8 62.0 4.9 8.0 2.7 18.0 3.9

50.0 18.0 3.9 50.0 5.1 10.0 3.0 12.0 3.3

62.5 20.0 4.0 36.0 4.8 4.0 2.0 6.0 2.4

75.0 12.0 3.3 36.0 4.8 18.0 3.9 14.0 3.5

87.5 6.0 2.4 24.0 4.3 16.0 3.7 12.0 3.3

(b)
Input Unit Lesion

Amount of Damage Percent Correct
(% units
eliminated) Correct Pairings Incorrect pairings

0 epochs 10 epochs 0 epochs 10 epochs
Mean SE Mean SE Mean SE Mean SE

12.5 68.0 4.7 98.0 1.4 0.0 0.0 4.0 2.0

25.0 58.0 5.0 96.0 2.0 8.0 2.7 4.0 2.0

37.5 32.0 4.7 72.0 4.5 8.0 2.7 4.0 2.0

50.0 20.0 4.0 74.0 4.4 6.0 2.4 18.0 3.9

62.5 16.0 3.7 18.0 3.9 10.0 3.0 10.0 3.0

75.0 12.0 3.3 46.0 5.0 6.0 2.4 24.0 4.3

87.5 10.0 3.0 18.0 3.9 2.0 1.4 20.0 4.0
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Table 3
Settling time for familiar and unfamiliar face patterns

(a)
Hidden Unit Lesion

Amount of Damage Number of cycles
(% units
eliminated) Familiar face Unfamiliar face

Mean SE Mean SE

12.5 154.3 6.9 278.1 14.1

25 176.5 11.5 256.3 12.8

37.5 170.6 10.2 267.4 13.8

50 162.5 10.8 223.5 14.3

62.5 145.0 8.5 191.6 10.1

75 124.2 6.9 162.5 8.3

87.5 119.9 12.0 138.3 7.4

(b)
Input Unit Lesion

Amount of Damage Number of cycles
(% units
eliminated) Familiar face Unfamiliar face

Mean SE Mean SE

12.5 187.4 10.2 284.2 18.4

25 222.3 10.8 276.4 15.2

37.5 255.9 14.2 255.7 14.3

50 258.3 11.2 306.6 18.1

62.5 255.3 14.4 273.3 15.0

75 293.7 14.0 296.6 14.7

87.5 368.9 20.8 359.2 18.8
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Table 4
Settling time for novel patterns before and after

a small amount of learning

(a)
Hidden Unit Lesion

Amount of Damage Number of cycles
(% units
eliminated) Before learning After training 5 epochs

Mean SE Mean SE

12.5 376.0 18.8 365.0 21.1

25.0 476.2 26.9 430.9 26.3

37.5 475.3 23.9 419.1 30.0

50.0 513.9 29.2 465.8 25.7

62.5 506.6 24.9 438.3 23.6

75.0 521.6 25.7 467.2 25.3

87.5 669.4 35.0 431.6 18.2

(b)
Input Unit Lesion

Amount of Damage Number of cycles
(% units
eliminated) Before learning After training 5 epochs

Mean SE Mean SE

12.5 369.5 22.0 365.8 22.5

25.0 473.3 27.3 446.7 29.3

37.5 464.3 21.4 486.1 33.4

50.0 529.4 31.4 474.3 23.4

62.5 506.3 26.9 462.8 26.6

75.0 538.5 25.3 468.2 21.7

87.5 469.6 22.6 544.2 36.5
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Table 5
Overt occupation categorization

(a)
Hidden Unit Damage

Amount of Damage Percent Correct
(percent units eliminated) Mean Standard Error

12.5 85.5 3.1

25.0 77.0 3.3

37.5 74.0 4.4

50.0 62.5 4.5

62.5 59.5 5.1

75.0 53.0 5.0

87.5 51.5 4.5

(b)
Input Unit Damage

Amount of Damage Percent Correct

(percent units eliminated) Mean Standard Error

12.5 88.0 1.2

25.0 86.5 2.3

37.5 73.0 3.4

50.0 64.5 4.4

62.5 59.5 4.9

75.0 57.5 4.8

87.5 57.0 5.0
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Table 6

Time to categorize names according to their occupation alone
and in the presence of same- and different-categorl fa--:

(a)
Hidden Unit Damage

Amount of Damage Cycles for correct occupation unit to
(% units attain positive activation
eliminated)

No face Same cat. Diff cat.
Mean SE Mean SE Mean SE

12.5 50.5 5.5 49.0 4.4 142.8 13.6

25.0 49.8 5.9 75.3 9.1 150.5 12.2

37.5 55.3 5.8 76.1 9.3 110.1 8.9

50.0 70.8 13.3 S1.6 8.9 114.0 8.8

62.5 66.6 13.9 59.6 6.5 82.1 6.9

75.0 73.0 15.1 84.0 7.6 98.0 7.8

87.5 62.8 9.1 72.9 9.2 66.9 5.0

(b)
Input Unit Damage

Amount of Damage Cycles for correct occupation unit to
(% units attain positive activation
eliminated)

No face Same cat. Diff cat.
Mean SE Mean SE Mean SE

25.0 69.6 9.2 101.7 9.2 77.0 16.0

37.5 55.8 5.6 88.9 8.3 96.3 20.2

12.5 52.0 4.4 115.4 9.3 55.3 9.3

50.0 101.3 10.4 146.5 13.1 126.9 21.6

87.5 76.3 7.6 78.8 6.7 144.0 27.2

62.5 106.0 11.2 131.8 11.3 123.0 24.2

75.0 107.5 10.9 120.6 10.7 130.9 21.9
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